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The electron energy spectrum of a circular ring in an external 
magnetic field 

S Klama 
Ferromagnetics Labontory, Institute of Molecular Physics, Polish Academy of Sciences, 
Smoluchowsldego 17/19, 60-179 Poznari, Poland 

Received 24 August 1992, in final form 2 March 1993 

AbslracL The dynamics of two-dimensional electrons in B ci~cular ring in an external 
perpendicular magnetic field is investigated. The boundaries of the ring are approximated by 
infinite potential barriers. Within the quasiclassical approximation, a mmplete classification of 
the electron states generated by confinement and magnetic field is provided. 

1. introduction 

Over the past years, technological progress in producing semiconductor devices by 
introducing lateral structure on quasi-two-dimensional electrons (see e.g. Merkt 1990, Merkt 
er al 1989, Kern et a1 1991) has induced a vivid interest'in theoretical investigations of 
confined electron dynamics (Geerinckx et al 1990, Rossler 1990, Lent 1991, Klama and 
Rossler 1992a, b, Falkovsky and Klama 1993). One of the frequently investigated models is 
an electron gas with the boundary simulated by a parabolic potential, i.e. a soft-wall potential 
(see e.g. Rossler 1990). This model eventually leads to simple analytical results; however, 
it also presents some shortcomings: for instance, it admits no edge states. In addition to the 
soft-wall potential model, another one with the two-dimensional (2D) region bounded by an 
infinite potential barrier (hard-wall potential) is studied. As there appears to be no possibility 
to get exact analytical results for the !atter model with an external magnetic field, one applies 
numerical (Robnik 1986, Lent 1991) methods or the quasiclassical approach (Klama and 
Rossler 1992a, Falkovsky and Klama 1993). Within the quasiclassical approach, the rules 
leading to the electron energy spectrum (EES) represent transcendental equations-see Klama 
and RGssler (1992) and.Falkovsky and Klama (1993) for the quantum dot and equations 
(31), (45) and (52) below for the ring-admitting analytical solutions in special cases only. 

Nevertheless, the quasiclassical approximation makes it possible to check the character 
of the electron states generated by confinement and magnetic field, and to present their 
complete classification. 

In this paper we study the energy spectrum of non-interacting electrons confined to a 
circular ring with hard-wall potentials in a perpendicular magnetic field. 

2. 
approach 

The problem of ZD electrons confined to a ring and subject to homogeneous magnetic field 
H = (0.0, H) perpendicular to the ring can he modelled in the simple effective-mass 
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approximation by the Hamiltonian 

where 

and V ( x ,  y) is the confinement potential. We choose the vector potential of the magnetic 
field in the symmetric gauge A = ;H( -y ,  x ,  0) and introduce polar coordinates (p,  (0) = p. 
For an infinite barrier confinement we consider the Schrodinger equation associated with 
7-10 for the homogeneous 2D space with the boundary conditions of vanishing wavefunction 
at 

p = r + O  p = R - 0  (3) 

where r is the internal and R is the external radius of the ring. In the polar coordinate 
system the Hamiltonian (2) takes the form 

where 1 = (h/jmC)'l2 is the magnetic length and w, = e H / w c .  The angular momentum 
operator commutes with the Hamiltonian (4), hence we can take the wavefunction of the 
problem without confinement in the form 

q ( p )  = Q(p)e'"9 m = 0, f l .  f2, . . . . ( 5 )  

Using (5) in the Schrodinger equation 7-1(p)q(p) = &(p)  and making use of the ansatz 

~ ( 5 )  = t"/2e-e/2p(e) = ;(p/l) '  (6) 

we obtain Kummer's differential equation: 

5 dZyft)/dt2 + (Y - t )  dy($')ld$ - a y ( t )  = 0 (7) 

with y = 1 f m, ct = y /2  - A and A = (€/Amc) - m/2. 
The general solution of (7), for integer m, can be written as a linear combination of its 

linearly independent particular solutions y~ (e)  and y2( t )  expressed by Kummer's functions 
F and U :  

(8) Y Q )  = ClYl(0 + G Y Z ( t )  

where 

y , ( ( )  = p-Y)'2F(ly I ,  7 4) Y 2 W  = U(% Y, t )  (9) 

i. = 1 + ImI, B = 7/2 - h and C1, C2 are constants. Substituting (8) into (6) we get the 
general solution of the considered problem:' 

@(e) = CI @ I  (0 + CZQ2(C) (10) 
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with @ p i ( : )  = @2e-f/zyi(:), i = 1,2 
From the asymptotic properties of the OjQ)  it follows that in the case of a free 2D 

space the solution (10) is bounded if we put CZ = 0 and 2 = - N ;  N = 0, I,?,, . . .. These 
conditions lead us to the well known expression for the electron energy spectrum (m): 

t = 6N(m) = [ N  + i( /ml + m  + I ) lh~ , .  (11) 

By imposing the boundary conditions (3) on the wavefunction (lo), we can write the 
exact expression describing the EES of the ring: 

where tr = $(r/I)’ and CR = $(R/I)’ .  Equation (12) can be solved analytically in the cases 
of well defined asymptotic expressions for the functions F arid U (see e.g. Abramowitz and 
Stegun 1964). 

As an example we shall calculate the EES for the case of large Er and ci and negative 
quantities and and y that are bounded. In this case by using asymptotic representations for 
the functions F and U (see Abramowitz and Stegun 1964, formulae (13.5.14) and (13.5.16)) 
we obtain the following expression for the Em: 

E = (N2wA/ (40c )  + m/2)fiwC (13) 

where 2wA = (1/21.~)[2xh/(R - r)]’ is the energy of the electron with wavelength R - r. 
Equation (13) is valid under the condition &/hue >> Iml+ m + 1, i.e. for weak magnetic 
field. 

3. The electron dynamics in 20 space: quasiclassical approach 

For further discussion it is convenient to apply the quasiclassical approximation enabling us 
to arrive at expressions providing the electron wavefunctions in the whole range of values 
of parameters of the problem in question. 

After substitution 

y ( 6 )  = p / z e % ( F )  (14) 

into (7) and with K = :/?,A. as a new variable, we obtain 

d2U(K)/dKZ - h Z Q ( K ) u ( K )  = 0 

Q ( K )  = 1 - 2 / K  + K 0 / K 2  

KO = CIA2 = 4C(l/r,)4 

C = (mZ - 1)/4 r, = 1(2h)1/2. (17) 

Note that KO determines the minimum of a ‘potential‘ well described by Q ( K )  and 
Q(Ko) = 1 - 1/Ko represents the depth of this well. The condition that bound states 
exist in the potential well is of the form Q(Ko) c 0, and consequently 0 < KO < 1. 

(15) 

(16) 
. .  

K = $ ( p / r d z  
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Now we shall solve (15) by the quasiclassical method. Since Q ( K )  o( K-* at K + 0, the 
correct solutions of the quasiclassical approximation can be obtamed if in the expression for 
C the term (-1/4) is omitted: i.e. C = (m/2):! for m # 0 (see e.g. Nikiforov and Uvarov 
1984). The case m = 0 has been discussed in detail by Falkovsky and Klama (1993). 

Using (14) and (6) we get 

@ ( e )  = e- ’ /2u(e)  = ~ - ~ ~ * ~ c l u l ~ o  + cz~z(e)l (18) 

where 111 and U:! are the particular solutions of (15). Making use of the well known rules for 
matching wavefunctions at the turning points K ,  = 1 - (1 - K O ) ] / *  and K:! = 1 + (1 - K O ) ’ ~  
of the ‘potential’ well Q(K) .  we can write the following expressions for the solutions of 
(15) (cf. Falkovsky and Klama 1993): 

with 

A =exp[-A(1 -InA)] 

B = (lmI!/Zn)r(l - C)exp[A(l --Ink)] 

where r(x) is the Euler r function. In the expressions (19c) and (20c) there exist not only 
large terms but also small ones, which become relevant if the coefficients of the large.terms 
disappear. In such a case we have substituted in the small terms (-l)N for the sine functions 
(Falkovsky and Klama 1993). The expressions (19) and (20) hold under the condition 

which represents the condition for the quasiclassical approximation to be valid. Hence, the 
results obtained using the wavefunctions (19) and (20) are formally valid at large N and 
arbitrary [ml, or inversely. 
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The expression (IS) with U I  and u2 in the form (19) and (20) represent the quasiclassical 
solution of the considered problem. From (9) and (14) we get expressions: 

F(G. 7 , t )  = f-p/2eE/2u] (0 

~ ( a ,  y. $1 = ~ - ~ / ’ e % ( t )  

( 2 W  

(22b) 

which together with (19) and (20) are the quasiclassical representations of Kummer’s 
functions. 

After imposing the boundary conditions (3) on the quasiclassical wavefunction (18) we 
obtain the expression determining the EES of the nng in the quasiclassical approximation: 

with K, = $ ( r / r c )  2 and K R  = z (R / rJ2 .  I 

Within the quasiclassical approacb the electron states are represented by cyclotron orbits. 
Hence the ,interaction of an electron with the boundaries of a finite region reduces ‘to 
reflection of an electron moving on a circular cyclo,tron orbit at the boundaries in such 
a way that only a fragment of that cyclotron orbit which would exist in an unbounded ZD 
space can subsist within the ring.. Such fragments form a cyclotron trajectory lying within 
the ring. The character of this trajectory depends on mutual relations among the values of 
the parameters of the cyclotron orbit in  the unbounded 2D space, U and y ,  and the linear 
dimensions of the ring, r and R. The symbol U represents the cyclotron radius and y is the 
cyclotron orbit guide centre. Note that the quantities y and U are the constants of motion in 
both the classical and the quantum-mechanical sense in the unbounded 2D space and fulfil 
the relations: 

y’ + U’ = 2r,Z . y 2  - U’ =.-2mP. (24) 

For the purpose of further discussion we shall present relations between the 
characteristics of the cyclotron orbits and the variables characterizing the EES of the ring. 

Note that the expressions (24) are of approximate character as far as the problem of 
objects bounded in space is considered (cf. Lent 1991). Nevertheless, we shall apply this 
approximation with the aim of classifying the cyclotron trajectories with respect to the 
values of the parameters U ,  y and r ,  R. Let us stress that in the model under consideration 
the reflection of the electron from the boundaries is of a specular character. After making ~~ 

use of (24) and (17) we get 

(y’ - a‘)/(y’ + u2) 

(D’ - y 2 ) / ( y 2  +U’) 

for m < o 
for m =- o 

K2 = ( y  f U)’/(y’  + U’) 

K R  = R2/(y’ + 0’). 

1 K:” = 

K I  = (Y - U)’/(y2 + U’)  

K, = r2 / (y ’  +U’)  
( 2 3  

From (24) it follows that y < U form =- 0 and y > U for m < 0. 
Equation (23) and-expressions ‘(19), (20) and (24) allow us in the quasiclassical 

approximation to find expressions describing the EES and to classify the electron 
states according to the related cyclotron orbits. The expressions for the quasiclassical 
wavefunctions (see (19) and (20)) allow one to perform an analysis of the problem in 
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question by considering four separate cases covering the whole range of values of the 
parameters of our problem. The cases are determined by mutual relations of I C ~ ,  KR and 
K I ,  K2 as follows: 

(d) KI < Kr < Kz and KR i K2 

(a) K I  < K, < Kz and KR > K2 

(c) 0 < K, < K I  and KI < K R  < K2 

('D) 0 < Kr < K l  and KR > KZ. 

For all those cases K, < K R ,  since for the ring r < R. Let us discuss the above cases 
one by one. 

3.1. The case (A) 
In this case both potential barriers are situated between the turning points KI and ~2 (see 
(26)). Substituting the corresponding quasiclassical expressions for wavefunctions (19) and 
(20) into (23) we arrive at the expression describing the EES of the states that arise via 
interaction between the electron and both boundaries of the ring: 

After performing the integration in (30) we obtain the equation determining the energy 
spectrum of these states: 

f (KR,  K r ,  KO) @ ( N ,  Iml) (31) 

where 

with 

@ ( N ,  [ml) = N/lml m = 3 3 ,  *2, +3,. . . . (33) 

Now we introduce the scaling parameter 

u = ~ ~ f ~ ~ = ( r / R ) ~ < l  (34) 

and a new variable, which will characterize the region of motion accessible for the electron 
in the ring: 

6 = i [ ( R  - r)/rC]' = [(I - UtJ2 ) ' / (4U) ]K r .  (35) 



Electron states in a ring 5615 

1 - rz /u  I - r i  - sin-' ( ) +sin-' ( ) 
(1 - K O ) ' / ~  (1 -Ko)I/' 

The region of physical solutions of (37) in the (2, K:)') plane, called the K plane in the 
following, is defined by the following inequalities: 

(1 - i T / U ) '  + KO < 1 

( I  - i T ) ' + K o  < 1 

i > v i  (U < 1). 

The above-mentioned parameters fulfil the relations 

O < U < l  0 < r < 00 u/r = (I - u1/2)2/4 

0 < U / 5  < 114 I / T  E [o, CO). 

Equations corresponding to the inequalities (39) ' and (40) as readily seen  describe^ 
semiellipses in the K plane. To (39) correspond the semiellipse S (connected with R 
barrier) and to (40) the semiellipse L (connected with r barrier). On this plane the considered 
electron states are positioned inside the overlap region of these semiellipses (see figure 1). 
The upper boundary (upper part of the semiellipse S) of this region describes the equation 
i = w I / r  and the lower one (lower part of the semiellipse L) ri. = K ~ / T .  The upper 
part of the semiellipse L is described by the equation Is = K 2 / r ,  and the lower part of the 
'semiellipse S is described by the equation i = w / r .  In the case l / r  < I (1 < r < 00) 

and 119 < U < 1 (narrow ring) both semiellipses are elongated along the, K:/* axis (see 
figures l(a) and (c)), but if 1/r > 1 (0 < 5 < 1) and 0 < U < 119 (wide ring), the 
semiellipse L. is elongated along the i axis and the semiellipse S is elongated along the 
K:" axis (see figures l(bf and (df). 

The electronic states are represented by three topologically different cyclotron 
trajectories that arise due to the specular reflection of the electron moving along the cyclotron 
orbit on both boundaries of the ring. If the centre of the cyclotron orbit is situated within 
the circle of radius r ,  the parameters of the problem under consideration fulfil the following 
relations: 

O < r - y < u  R - y < u  i.e. K3 < K, < K 2  K3 < K R  C: K2' ' (42) 
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Figure 1. Semiellipses in the (t,q:‘*j plane (explained in the text) indicating the regions 
for which the solutions of (31), (45) and (52) represent the electron states corresponding to 
topologically different cyclotron trajectories within the ring in the presence of an external 
magnetic field (a) and (b) for m c 0, (c) and (d)  for m =. 0; (a)  and (c )  for the case 
l ie c I and 119 e v e 1 (1/3 c r / R  e I), (b) and (d)  for the case Ijr > I, 0 < v < 1/9 
(0 c r/R c 1/3). Pacts (a) and (b) were dmwn for Y = 0.25 and (c) and (d) were drawn for 
Y = 0.1, The regions where various types of cyclotron trajectories exist (explanation in the text) 
are separated by full lines and a m .  In the regions denoted by 2(n). 2(b), Xc) .  3(a), 3(b), 3(e), 
4(a), 4(b), S(a), S(b) and S(cj there exist the types of cyclotron trajectories shown in figures 2. 
3, 4 and 5,  respeaivdy. 

where 

K3 = Y z / ( Y z  +U*). (424  

This kind of cyclotron trajectory is shown on figure 2(n). The quantity ~3 can be expressed 
with the help of (17) and (24) as 

K3 = +(I -m/?.h) = f (1  &Ki’*) (426) 

where the + sign stands for m e 0 and - sign for m > 0. On the K plane the cyclotron 
trajectories (Cr) of Z(a) type exist in the region K ~ / T  < i < v K * / T .  This region is bounded 
from the right by the arc i =- q / T .  

If the centre of the cyclotron orbit is situated within the ring ( r  < y e R)  the trajectory 
shown on figure 2(b) is realized and the parameters fulfil the following inequalities 

O < y - r < a  R - y < c  i.e. K ]  < K, < K3 K3 < KR < Kz. (43) 

It follows that CT of this type exist at 

UK3/C .t < K 3 / 5  (43Q) 

and if the condition of existence of such CT within the region of semiellipses overlap is 
added to (43a), i.e. E > K t / T ,  we shall obtain a complete description of the region in the 
K plane where these CT exist (see figure 1). 
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IC1 

Figure 2. The types of cyclotron trajectories created by specular reflection of an electron moving 
along cyclotron orbits with reflection occurring on both boundaries of the ring. The EES related 
to these trajectories can be obtained as a solution of (31). Localization of these states in the 
(i, x iJz )  plane is shown in figure i and conditions of their existence are given in figure 6.  

101 1 1  ~ 

F i g m  3. The types of cyclotron trajectories created by specuiarreflection of an electron moving 
along cyclotron orbits with reflection occurring along the internal boundary of the ring. These 
trajectories lie in the regions of the (i, @) plane that are shown in figure I and exist under 
conditions given in figure 6. The EES related to these trajectories is described by equation (45). 

If the centre of the cyclotron orbit is situated outside the ring (y > R )  we have: 

O < y - R < o  y - r < u  i.e. . K I  < K~ < ~3 K I  < K R  < K3. (44) 

This kind of trajectory is illustrated on figure 2(c). The CT of Z(c) type exist on the K 
plane at t q / T  < i < V K ~ / T  (see figure 1). 

For K~ << K~ << 1, K, < K R  in the RHS of the expression (38) we can apply the 
expansion: 

sin-’ x N n/2 - (1 - xz)”z/x 

and from (31) we obtain the expression-(13) for the EES in the weak magnetic field region. 

3.2. The care (0) 
As follows from (27), now the lowest potential barrier (determined by K , )  is confined 
between the turning points, whereas the upper barrier lies outside the turning point K Z .  

Here, the electron is.specularly reflected by the internal boundary of the ring, i.e. p = r .  
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Substituting the corresponding quasiclassical wavefunctions (19) and (20) into (23) 
we arrive at the expression describing the electron energetic spectrum of the edge states 
(skipping orbits on the boundary p = r ) .  These states arise due to interaction between the 
electron and the internal boundary of the ring. The expression has the form 

cos a - 2e2’R(’) c o s [ ~ x ( ~  - K:”)] cos B = o (45) 

where 

In this case we have two types of cyclotron trajectories, which are shown in figure 3. If 
the cyclotron orbit centre lies inside the circle with radius r (y < r ) ,  the parameters of the 
considered system fulfil the relations: 

O < r - y < u  R - y > u  i.e. K3 < Kr < K2 K R  > K2. (48) 

This type of CT is shown in figure 3(a). The CT of 3(a) type consist of fragments of 
cyclotron orbits traced by the moving electron specularly reflected along the r bamer (with 
the cyclotron orbit centre inside of the circle with radius r); these are skipping trajectories 
on the r barrier of the ring. In the K plane these CT exist at V K Z / ~  < B < K& and 
i > K ~ / z .  We note that this type of CT exists for an integer m, but the area of this region 
occupied by them on the K plane depends on the sign of m and the values of the parameters 
T and Y (see figure 1). 

In the second case when the centre of the cyclotron orbit lies inside of the ring 
(r < y < R )  we have: 

O < y - r < u  R - y > o  i.e. Kl < Kr < Kg K R  5 K2. (49) 

The cyclotron trajectory is shown in figure 3(b). The CT of 3(b) type consist of parts of 
cyclotron orbits traced by the moving electron specularly reflected along the r barrier. They 
occur if V K Z / T  < 3 < K ~ / Z  and K ~ / T  > V K Z / T ,  and exist in the regions of the K plane 
shown in figure 1. 

3.3. The case (C) 

In this case (see (28)) the electron is specularly reflected by the boundary p = R .  The lower 
potential barrier lies below the left,turning point and the upper bamer lies outside the right 
turning point. The presence of the specular internal boundary of the ring affects only the 
exponentially damped tail of the wavefunction. Here also two types of trajectories exist: 
namely such with the cyclotron radius centre lying either outside (figure 4(a)) or inside the 
ring (figure 4(b)). 

If the cyclotron orbit centre lies outside the ring (see figure 4(a)) then 

y - r > u  O < y - R < u  i.e. O < K , < K I  K ~ < K R < K , .  (50) 
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Figure 4. The types of cyclotron trajectories created by specular reflection of an electron moving 
along cyclotron orbits with reflection occurring along the extemal boundary of the ring. These 
mjectories lie in the regions of the ( F ,  x i / ' )  plane shown in figure 1 and conditions for their 
existence are given in figure 6.  The EES related 04 these hajectories is described by equation 
(52). 

@@ Id I b1 

@- '  IC1 

Figure 5. The types of cyclotron orbits with the electmn interacting wenkly with the boundaries 
of the ring. They are situated in the region of the ( F ,  til2) plane shown in figure I and exist 
under conditions given in figure 6.  Type (a) exists form e 0 and types (b) and (c) form > 0. 
The EES corresponding to these electron states is described by equation (55). 

The (JT of 4(a) type represent skipping trajectories along the R barrier with the cyclotron 
orbit centre outside of the ring. The region of existence of this kind of the c~ in the K 
plane is described by the conditions: V K ~ / T  < i < K t / z  and K ~ / T  < VK&. 

In the case when the cyclotron orbit centre lies inside the ring (see figure 4(b)) we have: 

y - r > u  O < R - y < u  i.e. O < K , < K I  K3 < KR < K?. (51) 

The CT of 4(b) type represent skipping trajectories along the R barrier. These CT consist 
of fragments of cyclotron orbits of the electron reflected specularly from the R boundary 
of the ring and these orbits have their centres inside the ring. The existence conditions for 
these CT on the K plane are as follows: u K 3 / r  < i < Kz/r. The~cT of 4(a) and 4(b) 
type lie in that part of the semiellipse S which has no overlap with the semiellipse L (see 
figure 1); however, the electron states of 4(b) type do not exist for m > 0. 

The expression describing the spectrum of the states of 4(a) and 4(b) type can be 
obtained by substitution of the corresponding wavefunctions (19) and (20) into (23). We 



3.4. The case (D) 

Now, both potential barriers lie outside the ming points, i.e. 0 < K~ e K I  and K R  > K Z .  

In this case the EES of the ring has Landau character. After inserting the corresponding 
wavefunctions (19) and (20) into (23) we obtain the expression describing the EES of these 
states in the following form: 

)I (55) 

(554 

E = EN., ,  = [ N  + ?(]mi I + m) + IIFLU, - @uc/n) cos-l[i(e-2’R(A) +e-”,!’) 

x [ N  + i( lm I+ m + I)]fio, + (huc/zir)(e-z’n‘Aj + e-’’,(*)) 

where 

J,(A) =*L,“ dK[Q(K)]’/* J R ( A )  dK[Q(K)]’”. (56) 

The integrals (56) should be calculated at a value of the variable E determined by the first 
term on the RHS of expression (55a). 

The cyclotron orbits representing these states are shown in figure 5. The parameters of 
the cyclotron orbits shown on figure 5(a) fulfil the inequalities y -r > U and R- y > U and 
the corresponding electron states exist for m < 0. For the cyclotron orbits symmetric with 
respect to the coordinate system centre shown in figure 5(b) it occurs at y = 0, r < U < R 
and the electron states exist for m > 0. The cyclotron orbits shown in figure 5(c) exist for 
m > O a t  

R - y r o  y > r  y + r < c r  m > O .  (57) 

The CT of 5(a), 5(b) and 5(c) type are of Landau character. As mentioned before, these 
states are situated in the region outside the semiellipses S and L. The region where the 
cyclotron orbits of 5(a), 5(b) and 5(c )  type exist on the K plane is described by the 
following inequalities: UKZ/S e E < K l / r .  The right boundaly of this region is described 
by the equation KO = 1. 

A scheme of conditions for various kinds of the cyclotron trajectories in the ring is 
given in figure 6. 
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Figure 6. The existence regions of various topologically different CT as shown in figures 2-5 
presented in t e m  of variables w, and ~ g .  The X I  and KZ represent the Nming points where% 
the positions of the half-lines cr = m and KR = ~3 depend on the sign of m (see (426)). 

4. Summary 

Application of the quasiclassical approximation to the problem of the energy spectrum of 
an electron confined to a ring made it possible: 

magnetic in the whole range of values of parameters of the problem in question, 
(i) to perform a complete classification of the electron states in the ring in a perpendicular 

(ii) to find the existence conditions for particular electronic states (cf figure 6), 
(iii) to write analytical expressions determining the EES for low (cf (13), see d s o  the 

(iv) to derive simple transcendental equations determining the EES for any values of the 
text~after (44)) and high magnetic fields (cf (55)), and 

parameters of the system (cf (31), (45) and (52)). 

Equations (31), (45) and (52) are easy to solve numerically in the K plane and can be 
rewritten with no difficulty in the commonly used coordinates of energy versus magnetic 
field (cf Klama and Rossler 1992a). The same applies to the regions .of existence of particular 
types of electronic states shown in figure 6. Note that the transcendental equations as well 
as the existence conditions of the electronic states bear a considerably more complicated 
form when expressed in the energy and magnetic field variables than that in the K and KO 
ones. 

After completing this work there appeared the interesting paper by Chakraborty and 
Pietilainen (1992) concerning quantum dots and rings with parabolic-wall potential, and 
pointing out that in semiconductor nanoshuctures a quantum ring can be created from a 
quantum dot. The perspective of publication of experimental papers dealing with the ring 
problem in the nearest future makes it reasonable to perform a numerical analysis of the 
above-mentioned transcendental equations for specific physical systems. 
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